Irradiation deformation near different atomic grain boundaries in α-Zr: An investigation of thermodynamics and kinetics of point defects.
نویسندگان
چکیده
Understanding radiation performance of nanocrystalline Zr-based alloys is essential to develop internal components and external cladding materials with self-healing capabilities for longer and safer life cycles in harsh reactor environments. However, the precise role of interfaces in modifying defect production and evolution in α-Zr is not yet determined. Using atomistic simulation methods, we investigate the influence of different atomic grain boundaries (GBs) in thermodynamic and kinetic properties of defects on short timescales. We observe that the sink efficiency and sink strength of interfaces vary significantly with the boundary structures, with a preference to absorb interstitials (vacancies) when the GBs are semi-parallel (semi-perpendicular) relative to the basal planes. Further, we identify three distinct primary cascade geometries, and find that the residual defect clustering in grain interiors depends on how the atomic GBs modify the spatial distribution of defects within the crystal structure. Finally, we explain and discuss the dynamic results in terms of energetic and kinetic behaviors of defects near the pristine and damaged boundaries. Eventually, these will provide a microscopic reference for further improving the radiation response of Zr by using fine grains or by introducing a high density of dispersoids in material metallurgy.
منابع مشابه
Structural phase transformations in metallic grain boundaries.
Structural transformations at interfaces are of profound fundamental interest as complex examples of phase transitions in low-dimensional systems. Despite decades of extensive research, no compelling evidence exists for structural transformations in high-angle grain boundaries in elemental systems. Here we show that the critical impediment to observations of such phase transformations in atomis...
متن کاملFlow Behavior of SP-700 Titanium Alloy During Hot Tensile Deformation in α+β and β Phase Regions
In this paper, in order to study the flow behavior and elongation of as-cast ingots of SP-700 titanium alloy, hot tensile test was done in α/β dual phase and β single phase regions using strain rate of 0.1 s-1. Results showed that the hot tensile behavior of SP-700 in the α/β dual phase region (700-900 ºC) was different from the β single phase one (950-1100 ºC) due to the nature of alpha and be...
متن کاملAN INVESTIGATION TO BAINITE FORMATION MORPHOLOGIES IN NI-CR BEARING LOW CARBON STEELS THROUGH THERMOMECHANICAL PROCESSING
The presence of bainite in the microstructure of steels to obtain a proper combination of strength and toughness has always been desired. The previous works however have shown that the presence of preferred bainite morphologies in the microstructure of any steel would not be readily accessible. In addition, the appearance of different bainite morphologies in the microstructure of any steel is d...
متن کاملStudies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay
Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...
متن کاملAtomistic Simulations of Stress Concentration and Dislocation Nucleation at Grain Boundaries
Dislocation channeling observed in irradiated metals has been thought to be one of the key stress factors in irradiation assisted stress corrosion cracking since it is an evidence to suggest that the slip deformation is localized and that the strong misfit are generated at grain boundaries. In the present study, the stress concentration and defect nucleation of polycrystalline copper thin film ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016